博士論文

酸性医薬候補品の代謝物生成機序および その予測精度向上に関する研究

平成 27 年度 関口 和孝

略語表4
序論6
第1章 In vitro/in vivo 間で認められた S-777469 代謝物プロファイルの乖離の精
查
第1節 緒論
第2節 実験材料および実験方法
第1項 化合物および試薬
第2項 [¹⁴ C]-S-777469の臨床薬物動態試験
第3項 ヒト凍結肝細胞を用いた in vitro 代謝物分析
第3節 結果
第1項 代謝物の生体内蓄積に関する検証
第2項 In vitro 試験条件に関する検証
第4節 考察
第5節 まとめ
第2章 ヒトにおける S-777469 主代謝物の生成機序および <i>in vitro/in vivo</i> 乖離の
原因の解明
第1節 緒論
第2節 実験材料および実験方法
第1項 化合物および試薬
第2項 5-HM および 5-CA 生成時の補酵素依存性試験
第3項 各種 P450 組換え酵素, P450 阻害剤および抗 P450 抗体を用い
た主代謝酵素同定試験27
第4項 血清アルブミン添加時の 5-HM, 5-CA 生成変動 28
第 5 項 CYP2C9 組換え酵素における血清アルブミン添加時の

S	5-777469	9代謝の変動
身	第 6項	CYP2C9 組換え酵素における長鎖脂肪酸添加時の 5-HM, 5-CA
4	主成速度	その変動
笥	育7項	LC-MS/MS を用いた定量
等	第8 項	データ解析
第3節	結果	
穿	第1項	5-HM および 5-CA 生成に関わる主代謝酵素同定 31
第	育2項	血清アルブミン添加による 5-HM, 5-CA 生成変動 35
笥	育3項	CYP2C9 組換え酵素における 5-HM, 5-CA 生成に及ぼす各種
月	旨肪酸の	》影響
第4節	考察	
第5節	まとめ	
第3章 H	IepaRG	細胞およびヒト肝細胞移植マウスを用いた S-777469 代謝予測
第1節	緒論	
第2節	実験材	料および実験方法
等	第1項	化合物および試薬 50
第	2項 1	- ト凍結肝細胞および HepaRG 細胞における S-777469 代謝物生
成	比較 …	
第	3項	コントロールマウスおよびヒト肝キメラマウスにおける
S-^	777469	莱物動態試験51
第3節	結果	
第	到項	ヒト凍結肝細胞および HepaRG 細胞における S-777469 代謝物
生	E成比較	
第	医2項	コントロールマウスおよびヒト肝キメラマウスにおける
S-	-777469	薬物動態試験 52

第4節	考察	55
第5節	まとめ	56
総括		57
本研究の詞	5上発表	61
謝辞		62
参考文献		67

略語表

本論文では以下の略語を使用した.

AG;	acyl-glucuronide
AKR;	aldo-keto reductase
AUC _{all} ;	area under the plasma concentrationtime curve from 0 hr to the last time
point	
AUC _{inf} ;	area under the plasma concentrationtime curve from 0 hr to infinity
BSA;	bovine serum albumin
5-CA;	S-777469 5-carboxylic acid
CB;	cannabinoid
CL _{int} ;	intrinsic clearance
CV;	coefficient of variation
CYP;	cytochrome P450
C _{max} ;	maximum concentration
DDI;	drug-drug interaction
DMSO;	dimethyl sulfoxide
FDA;	Food and Drug Administration
F _a ;	fraction absorbed
F _g ;	intestinal availability
4-HC;	S-777469 4-hydroxycyclohexane
6-HE;	S-777469 6-hydroxyethyl
5-HM;	S-777469 5-hydroxymethyl
5-HM-AG;	S-777469 5-hydroxymethyl acyl-glucuronide
HPLC;	high-performance liquid chromatography

IC ₅₀ ;	50% inhibitory concentration		
ICH;	International Conference on Harmonization of Technical Requirements		
	for Registration of Pharmaceuticals for Human Use		
k _a ;	absorption rate constant		
K _m ;	apparent substrate concentration at half-maximal velocity		
LC-MS/MS	liquid chromatography-tandem mass spectrometry		
Ms;	microsome		
m/z;	mass-to-charge ratio		
$NAD^+;$	nicotinamide adenine dinucleotide (oxidized form)		
NADH;	nicotinamide adenine dinucleotide (reduced form)		
β -NADP ⁺ ;	nicotinamide adenine dinucleotide phosphate (oxidized form)		
β -NADPH;	nicotinamide adenine dinucleotide phosphate (reduced form)		
P450;	cytochrome P450		
Q _h ;	hepatic blood flow		
S.D.;	standard deviation		
t _{1/2} ;	elimination half-life		
T _{max} ;	time to maximum concentration		
UGT;	uridine diphosphate glucuronosyltransferase		
V/[S];	velocity per substrate concentration		
V _{max} ;	maximal velocity		

生体は、医薬品や環境化学物質など多くの外来異物に曝露されているが、通 常、肝臓や小腸などにおいて、これら外来異物を水溶性の高い無害な代謝物へ と変換・排泄しその恒常性を維持している.一方, benzo[α]pyrene などの多環芳 香族炭化水素においては,代表的な薬物代謝酵素である cytochrome P450(P450, CYP) などにより代謝的活性化を受け、生体タンパクや DNA と結合し変異原性 を発揮することが知られている (Baird, Hooven et al. 2005). また, これまでの研 究から, acetaminophen や flutamide など複数の医薬品においても、未変化体その ものには毒性はないものの、代謝過程で生成する代謝物が肝障害や腎障害など 生体に副作用を起こすことが明らかとなっている (James, Mayeux et al. 2003, Srivastava, Maggs et al. 2010). また,近年,薬物性肝障害に関する作用機序や報 告例は LiverTox としてオンライン上で纏められている. さらに,米国食品医薬 品局 (Food and Drug Administration, FDA) や新薬承認審査基準の標準化を行う日 米 EU 医薬品規制調和国際会議(International Conference on Harmonization of Technical Requirements for Registration of Pharmaceuticals for Human Use, ICH) は代 謝物の安全性試験に関するガイダンス(Guidance for Industry - Safety Testing of Nonclinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals M3 (R2), ICH M3 (R2) guideline, ICH 2009) をそれ ぞれ策定しており, ICH M3 (R2) guidance においては、ヒトで生成する医薬品の 代謝物が総曝露の 10%を超え,且つ,その代謝物の曝露量が非臨床評価動物で 担保出来ない場合, phase Ⅲ試験までに代謝物自身の安全性試験を実施すべきで あることが記載されている. そのため, 非臨床段階でヒト代謝物を定性的, 定 量的に予測できずヒト代謝物の安全性を非臨床評価動物で担保出来ない場合,

開発スケジュールの遅延に繋がる恐れがある.このことから、より安全性の高い医薬品を創製するためには、まず、臨床試験前にヒト代謝物を精度高く予測し、代謝物の安全性評価が必要か判断することが重要と考えられる(戸塚ら編著、薬物(ヒト)代謝物の構造解析・同定と承認申請/照会事項対応,2015).

現在、加齢とともに複数の疾患を合併することが多くなることから、高齢者 を中心に複数の薬剤を組み合わせる多剤併用療法が行われている(林ら,高齢 者における医薬品の適正使用と安全管理,2006).また,癌や後天性免疫不全症 候群などに対する化学療法においても、治療効果増強や副作用低減の目的から、 異なる作用機序を有する薬剤の併用が一般的である.しかし、医薬品の併用は 併用薬同士の薬物間相互作用 (drug-drug interaction, DDI) により薬効の変動や副 作用発現に繋がる可能性がある(杉山ら,薬の相互作用としくみ,改訂第9版, 2010). そのため, 新薬の研究開発段階においては, 出来るだけ DDI ポテンシャ ルが少ない医薬品の創製および医薬品候補化合物が有する DDI ポテンシャルの 把握が行われている、これまで、代謝物の多くは水溶性が高く無害と考えられ てきたため、医薬品候補化合物の DDI ポテンシャルも未変化体を中心に行われ てきた. しかし, gemfibrozil や bupropion などの医薬品においては, 代謝物が, 未変化体と比較して,より高い DDI ポテンシャルを有することも報告されてい る (Ogilvie, Zhang et al. 2006, Reese, Wurm et al. 2008). さらに, FDA が発出した DDI に関するガイダンスには、ヒトで生成する医薬品の代謝物が未変化体の曝 露の 25%以上を示す場合,代謝物自身の DDI ポテンシャルを検証すべきである ことが記載されている (Guidance for Industry – Drug Interaction Studies-Study Design, Data Analysis, Implications for Dosing, and Labeling Recommendations, FDA 2012). このことから、より DDI ポテンシャルの低い医薬品創製には、代謝物の 安全性の観点と同様に、代謝物も含めた DDI ポテンシャルの把握が重要と考え られる.

通常, ヒトで生成する代謝物の予測には, ヒト肝ミクロソーム (Ms) やヒト 凍結肝細胞などのヒト由来の *in vitro* 試料が用いられる.これまでの研究から, これら *in vitro* 試験系は概ねヒト代謝物を予測できることが示されているが, 肝 代謝型の医薬品であってもこれらの試験系ではヒト代謝物の予測が困難な場合 も多く報告されている (Dalvie, Obach et al. 2009, Wang, Khetani et al. 2010). その ため, 精度高くヒト代謝物を予測し安全性および DDI ポテンシャルに及ぼす代 謝物の影響を精査するため, 非臨床段階でのヒト代謝物の予測精度向上は急務 である.

アトピー性皮膚炎は皮膚疾患の中で頻度の高い疾患の一つであり、日本にお けるアトピー性皮膚炎患者数は約37万人に上る(平成23年患者調査(傷病分 類編), 2011). アトピー性皮膚炎においては, 炎症性サイトカインが掻痒を誘 発するため、治療においては、抗ヒスタミン薬などの抗炎症薬などが処方され る.カンナビノイド受容体(CB 受容体)は様々な内因性/合成カンナビノイドに より活性化する G-タンパク共役型受容体である. CB 受容体は2 つのサブファミ リーに分類され、脳において精神活性作用に関わる CB1 受容体および白血球や 角化細胞などにおいて抗炎症作用に関わる CB2 受容体が存在する(Herkenham, al. 1990. Mailleux and Vanderhaeghen 1992) . Lynn et 1-((6-ethyl-1-(4-fluorobenzyl)-5-methyl-2-oxo-1,2-dihydropyridine-3-carbonyl)amino)cyclohexanecarboxylic acid (S-777469) は, CB2 受容体の選択的アゴニストであ り, 末端にカルボキシル基を有する酸性化合物である (Odan, Ishizuka et al. 2012). また、中枢移行性が低く、CB1 への結合親和性が低いことから、現在、中枢性 副作用の少ないアトピー性皮膚炎、掻痒治療薬として開発されている、未変化 体および代謝物の構造を Fig.1 に示す.非臨床段階におけるヒト肝 Ms およびヒ ト凍結肝細胞を用いた代謝物分析の結果,これら in vitro 試料においては 5位-水酸化体 (S-777469 5-hydroxymethyl, 5-HM) が主に検出された (Fig. 3). また,

8

5-HM は非臨床動物の肝細胞でより多く生成すること,非臨床動物における代謝 物プロファイルに肝細胞,血漿間で大きな差はなかったことから,臨床におい ても 5-HM が主代謝物として検出されることが示唆された.しかし,本薬剤の 第 I 相臨床試験の結果,ヒト血漿における主代謝物は 5-HM が二次代謝を受け た 5 位-カルボン酸体 (S-777469 5-carboxylic acid, 5-CA) であり,その血漿中曝 露は総曝露の約 24%を占めた (Fig. 2).一方,ヒト肝 Ms およびヒト凍結肝細胞 における 5-CA 生成量は全体の 1%未満であり,非臨床/臨床間で代謝物プロファ イルに大きな乖離が認められた.

そこで本研究では、より安全で DDI ポテンシャルの低い医薬品創製に繋がる ヒト代謝物プロファイルの予測精度向上を目的に、本薬剤の非臨床/臨床薬物動 態試験の条件および結果を基に, in vitro/in vivo 間で認められた代謝物プロファ イルの乖離の原因を精査した(第 1 章).次に、ヒト肝 Ms およびヒト凍結肝細 胞において 5-CA 生成が予測できなかった原因を 5-HM および 5-CA 生成に関わ る薬物代謝酵素の同定も含めて検討した(第2章).さらに、代謝物生成予測に 対する培養細胞およびヒト肝細胞移植マウス(ヒト肝キメラマウス)の有用性 についても検証を加えた(第3章). その結果, in vitro/in vivo 間で認められた S-777469 代謝物プロファイルの乖離の原因は in vitro 試験系において CYP2C9 の 触媒活性が抑制されているためであること、本薬剤を含む酸性医薬品のヒト代 謝物生成をより精度高く予測するには、血清アルブミン添加ヒト肝 Ms や HepaRG 細胞、ヒト肝キメラマウスなどを用いることが重要であることが示され た.以上,本研究によって, in vitro/in vivo 間で認められた代謝物生成の乖離の 原因が明確となるとともに、より安全で DDI ポテンシャルの低い医薬品創製に 繋がるヒト代謝物生成の予測精度向上に貢献する重要な因子を明らかにしたの で,以下に詳述する.

9

Fig. 1. Structure of S-777469 and its metabolites in rat, dog and humans. 5-HM,
S-777469 5-hydroxymethyl; 5-CA, S-777469 5-carboxylic acid; 6-HE, S-777469
6-hydroxyethyl; 4-HC, S-777469 4-hydroxycyclohexane; 5-HM-AG, S-777469
5-hydroxymethyl acyl-glucuronide; AG, acyl-glucuronide.

第1章 In vitro/in vivo 間で認められた S-777469 代謝物プロファイルの乖離の精 査

第1節 緒論

これまで、さまざまな医薬品において、生成した代謝物が肝障害などの副作 用や併用薬との DDI を引き起こすことが報告されており、より安全で DDI リス クの低い医薬品を創製するためには、代謝物も含めたリスク評価が重要と考え られている.現在,ヒト肝 Ms やヒト凍結肝細胞を用いたヒト代謝物予測が広く 行われているが、代謝物の特性によって、これら in vitro 試料を用いた試験では in vivo における代謝物プロファイルを予測できない場合がある. 代謝物プロフ ァイルに in vitro/in vivo 間での乖離がある場合,その要因には様々な可能性が考 えられる.まず,代謝物の消失半減期が未変化体より長くなり生体内で蓄積し た可能性が考えられる.通常,代謝過程により生成した代謝物は未変化体より も反応性が低くなる.一方,一部の医薬品代謝物においては、タンパク結合率 などの物性値が未変化体に比較して上昇することや反応性を有するために、代 謝物が未変化体に比較して蓄積傾向を示すことが報告されている (Karazniewicz, Dorota et al. 2014). この場合, *in vitro* 試験における代謝物の生成量は低くとも, in vivo における代謝物の曝露は高くなることが予想される. つぎに, in vitro 試 験における基質濃度や反応時間などの試験条件が in vivo 条件を反映していない 可能性が考えられる. また, その他に, in vitro/in vivo 間の環境の違いで十分に 酵素活性が発揮されない薬物代謝酵素が存在することが報告されていることか ら, in vitro 試験系では検出が困難な二次代謝反応が in vivo で起きた可能性など が考えられる(水垂ら,第16回 HAB 研究機構学術年会,2009). そこで,本章 では, in vitro/in vivo間で見られた代謝物プロファイルの乖離の原因を明らかに することを目的に、非臨床および臨床段階において実施した本薬剤の薬物動態

試験の条件および結果を基に,生体において S-777469 代謝物が蓄積した可能性および肝細胞を用いた in vitro 試験の条件が生体条件を反映していたかについて精査した.

第2節 実験材料および実験方法

第1項 化合物および試薬

[¹⁴C]-S-777469, S-777469, S-HM, 5-CA および 6 位-水酸化体(S-777469 6-hydroxyethyl, 6-HE) は塩野義製薬株式会社にて合成された. [¹⁴C]-S-777469の 比放射能は 1.0 μCi/mg, 放射化学的純度は 99.4%であった. ヒト凍結肝細胞は XenoTech, LLC (Lenexa, KS, USA) より購入した. その他の試薬および溶媒は HPLC 用, LC-MS/MS 用あるいは特級品の市販品を使用した.

第2項 [¹⁴C]-S-777469の臨床薬物動態試験

[¹⁴C]-S-777469 の臨床薬物動態試験は非盲検,非ランダム化比較試験として 6 名の健常者に対して行われた. 被験者の年齢は 18~55 歳で肥満度指数は 18.5~ 29.9 kg/m² であった.全ての被験者に対しインフォームドコンセントが実施され た.本試験は Protection of Human Subjects, Financial Disclosure by Clinical Investigations, Institutional Review Board, Investigational New Drug Application およ び Applications for the FDA Approval to Market a New Drug に関する連邦規則集に 従って実施された.全ての被験者は、8 時間絶食の後、800 mg/100 μ Ci/man の用 量で[¹⁴C]-S-777469 懸濁液を経口投与された.投与後、0.5, 0.75, 1, 2, 2.5, 3, 4, 6, 8, 10, 12, 16, 24, 36, 48 時間後に血漿サンプルを採取した.1 例の被験者に関しては、 採血が困難であったため、採血を中断し、解析から除外した.全てのサンプル は解析まで-80℃にて保存された.2gの血漿に8mlのアセトニトリルを添加し た後,4℃で 3,000 rpm にて 10 分間遠心した.この作業は2回繰り返した.上清 の重量を測定後, EZ-2 (Genevac, Suffolk, UK) にて乾燥させた. その後, 300 ml の 0.1% ギ酸水溶液/0.1% ギ酸アセトニトリル溶液 (80:20, v/v) にて再溶解させ た. 再溶解溶液を centricut ultra mini (Kurabo, Osaka, Japan) にて濾過した. 血漿 サンプルの測定には HP 1100 システム(Hewlett-Packard, Palo Alto, CA, USA) お $\downarrow U$ TSQ API2 performance pack (Thermo Fisher Scientific, Hemel Hempstead, UK) を用いた. カラムは XTTerra RP18 カラム (150 mm×4.6 mm i.d. 5 um, Waters Corporation, Milford, MA) を 1.0 ml/min にて使用した. 移動相は水/ギ酸 (99.9/0.1, v/v) およびアセトニトリル/ギ酸(99.9/0.1, v/v) を使用した.まず,20%有機相 を2分間流したのち52分に渡り有機相を40%まで引き上げた.その後,6分間, 90%の有機相を流した. 質量分析は陽イオン検出モードのエレクトロスプレーイ オン化法を用いて、各化合物の選択的な m/z をモニターした.血漿中における S-777469 および代謝物の定量限界値は 1.0 ng/ml であり, 1.0-1000 ng/ml の範囲で 定量した. 薬物動態学的パラメーターの算出は WinNonlin Version 5.2 (Certara, St. Louis, MO, USA) の非コンパートメント法を使用した. 血漿中濃度下面積 (AUC) は台形近似法にて算出した. 消失半減期(t_{1/2})は消失相の対数値の傾きから算 出した.血漿中最大薬物濃度(Cmax)および血漿中最大薬物濃度到達時間(Tmax) は測定値を用いた.また,吸収速度定数(ka)も血漿中濃度推移から算出した. 測定対象化合物のキャリブレーションカーブパラメーターを Table 1 に示す.

13

Theoretical	Mean measured conc. (ng/ml), CV (%)			
conc.(ng/ml)	S-777469	5-HM	5-CA	6-HE
1	1.00, 2.0	0.97, 2.0	0.97, 3.7	1.01, 2.4
2	2.00, 4.3	2.14, 2.0	2.14, 8.2	1.93, 5.9
10	10.4, 1.6	10.3, 2.0	10.6, 4.0	10.7, 4.9
50	51.3, 2.2	51.6, 2.0	51.5, 1.0	52.3, 4.1
200	201, 1.8	202, 2.0	201, 1.8	202, 2.2
400	387, 1.2	383, 2.0	379, 1.8	380, 3.0
800	782, 1.1	787, 2.0	771, 2.7	797, 8.3
1000	989, 2.8	968, 2.0	966, 3.5	949, 2.8

 Table 1
 The calibration curve parameters for S-777469 and its metabolites.

conc., concentration; CV, coefficient of variation.

5-HM, S-777469 5-hydroxymethyl; 6-HE, S-777469 6-hydroxyethyl; 5-CA, S-777469 5-carboxylic acid.

第3項 ヒト凍結肝細胞を用いた in vitro 代謝物分析

ヒト凍結肝細胞は 1×10⁶ cells/ml の濃度にて William's E 培地 (pH 7.4) に懸濁 させた. 20 μM [¹⁴C]-S-777469 をヒト凍結肝細胞に添加し, 5% CO₂ インキュベ ーター (Hirasawa Works, Tokyo, Japan) 内で 37°C にて 4 時間反応させた.反応 は氷冷した 4 倍量のアセトニトリルで停止し,反応溶液を 10 分間 3000 rpm にて 遠心した.サンプルの測定には Agilent 1100 system (Agilent Technologies, Santa Clara, CA, USA), Radiomatic 525TR Radio-Chromatography detector (PerkinElmer) および TSQ API2 performance pack (Thermo Fisher Scientific, Hemel Hempstead, UK) を用いた.カラムは XTTerra RP18 カラム (150 mm×4.6 mm i.d, 5 μm, Waters Corporation, Milford, MA, USA) を 1.0 ml/min にて使用した. 移動相は水/ギ酸 (99.9/0.1, v/v) およびアセトニトリル/ギ酸(99.9/0.1, v/v) を 68:32 の割合で使 用した. 移動相を Radio-Chromatography detector と TSQ API2 performance pack に 対し 3:1 の割合で分離させた. 質量分析は陽イオン検出モードのエレクトロスプ レーイオン化法を用いて, 各化合物の選択的な m/z をモニターし, 標品と照合 した. なお, 本試験に用いたヒト凍結肝細胞の各種 P450 代謝活性を Table 2 に 示す.

Table 2The metabolic activity for P450 marker substrate of cryopreserved humanhepatocytes used in this study.

Enzyme	Marker substrate reaction	Activity (pmol/	'min/	million cells)
CYP1A2	Phenacetin O-dealkylation	58.4	±	10.1
CYP2A6	Coumarin 7-hydroxylation	35.7	±	9.90
CYP2B6	Bupropion hydroxylation	155	±	22.0
CYP2C8	Amodiaquine N-dealkylation	422	±	87.0
CYP2C9	Diclofenac 4-hydroxylation	441	±	51.0
CYP2C19	S-mephenytoin 4-hydroxylation	13.1	±	1.50
CYP2D6	Dextromethorphan O-demethylation	133	±	11.0
CYP2E1	Chlozoxazone 6-hydroxylation	144	±	10.0
CYP3A4/5	Testosterone 6b-hydroxylation	1470	±	100.0
CYP3A4	Midazolam 1-hydroxylation	212	±	10.0
CYP4A11	Lauric acid 12-hydroxylation	25.5	±	4.10

第3節 結果

第1項 代謝物の生体内蓄積に関する検証

Fig. 2. Mean plasma concentration-time profiles for S-777469 and its main metabolites after a single oral administration of [¹⁴C]-S-777469 to healthy human subjects. 5-CA, S-777469 5-carboxylic acid; 5-HM, S-777469 5-hydroxymethyl; 6-HE, S-777469 6-hydroxyethyl.

健常者に 800 mg [¹⁴C]-S-777469 を単回経口投与した後の S-777469 および代謝 物の血漿中濃度推移および薬物動態学的パラメーター(PK parameter)を Fig. 2 および Table 3 に示す. S-777469, 5-HM, 5-CA および 6-HE の C_{max} 値はそれぞ れ 3948, 998, 2100 および 147 ng/ml であった (Table 3, Fig. 2). また, S-777469, 5-HM, 5-CA および 6-HE の血漿中濃度-時間曲線下面積 (AUC_{inf}) 値はそれぞれ

23802, 7556, 19570 および 1169 ng·hr/ml であった. 消失相における S-777469, 5-HM, 5-CA および 6-HE の血漿中濃度推移から t_{1/2} 値を算出したところ, S-777469, 5-HM, 5-CA および 6-HE の t_{1/2} はそれぞれ 7.6±3.7, 8.8±4.6, 9.1±5.1 および 9.7±5.2 hr であった. このことから, S-777469 および代謝物間において, 血漿からの消失に差はなかった. また, 排泄物中の S-777469, 5-HM および 5-CA の排泄量を測定したところ, それぞれ総曝露の 13.1%, 29.1%, 9.03%であった (Table 4).

Table 3 Pharmacokinetic parameters of S-777469 and its metabolites after a single oral administration of [¹⁴C]-S-777469 to healthy human subjects.

PK parameter	S-777469	5-CA	5-HM	6-HE
C _{max} (ng/ml)	$3948 ~\pm~ 1098$	$2100 ~\pm~ 988$	998 ± 237	$147 \ \pm \ 29.8$
$AUC_{inf}(ng\cdot hr/ml)$	23802 ± 5929	$19570 ~\pm~ 9762$	7556 ± 2595	$1169 ~\pm~ 507$
T _{max} (hr)	4.0 (2.0, 6.0)	6.0 (4.0, 8.0)	4.0 (2.5, 6.0)	4.0 (2.0, 6.0)
t _{1/2} (hr)	7.6 ± 3.7	9.1 ± 5.1	8.8 ± 4.6	9.7 ± 5.2

Data were expressed as the mean \pm S.D. of five subjects.

Median (min, max) was presented for T_{max} values.

5-CA, S-777469 5-carboxylic acid; 5-HM, S-777469 5-hydroxymethyl; 6-HE, S-777469 6-hydroxyethyl.

Table 4 Percentage of total radioactivity due to S-777469 and its metabolites in urine, feces and sum of excreta after a single oral administration of [¹⁴C]-S-777469 to healthy human subjects.

Percent of radioactive dose	S-777469	5-CA	5-HM	6-HE
Mean urinary excretion	0.65	5.85	5.67	1.04
Mean fecal excretion	12.4	3.18	23.4	5.16
Total	13.1	9.03	29.1	6.20

Data were expressed as the mean of five subjects.

Mean urinary and fecal excretion was determined by using 0–72 hr pooled urine and 0–144 hr pooled fecal samples, respectively.

5-CA, S-777469 5-carboxylic acid; 5-HM, S-777469 5-hydroxymethyl; 6-HE, S-777469 6-hydroxyethyl.

第2項 In vitro 試験条件に関する検証

まず、ヒトにおける 5-CA 生成条件を検証した. [¹⁴C]-S-777469 を用いた臨床 薬物動態試験の結果から、800 mg [¹⁴C]-S-777469 を単回経口投与した後の C_{max} 値は 3948 ng/ml であった (**Table 3**). また、WinNonlin を用いた解析から、吸収 速度定数は 0.1 min⁻¹ と計算された. さらに、これまで有機アニオン輸送ポリペ プチド 1B1 発現細胞を用いた検討から、S-777469 はほとんど能動的に肝臓に移 行しないことが示唆された (Data not shown). 以上の結果から、Ito らが提唱し た式 (1) より、S-777469 の最大肝臓中濃度 ($I_{in, max}$) を見積もった (Ito, Iwatsubo et al. 1998).

$$I_{\text{in},\text{max}} = C_{\text{max}} + (\text{Dose} \cdot \text{Fa} \cdot \text{Fg} \cdot \text{ka/Qh})$$
(1)

ここで、Dose は投与量を、 F_a は吸収率を、 F_g は消化管代謝回避率を、 k_a は吸収 速度定数を、また Q_h は肝血流量を表す. ヒトにおける $F_a \cdot F_g$ は1 であると仮定 ($F_g = 1$ も仮定)した. また、報告値に則り、ヒト肝血流量は1450 ml/min と設 定した(Davies and Morris 1993).

その結果, S-777469のヒト肝臓中最大濃度は 9.4 μ M と算出された.また、ヒトにおける 5-CAの T_{max}値は 4.0 hr であった (Table 3). T_{max}値は,経口投与された薬物が消化管での吸収、肝臓での代謝を受け血漿中に最大濃度曝露されるまでの時間を表しているため、ヒトにおいて、本薬剤は肝臓に 4 時間曝露されれば充分 5-CA を生成すると推察された.つぎに、ヒト凍結肝細胞を用いた *in vitro* 試験条件について精査した.ヒト凍結肝細胞を用いた *in vitro* 代謝試験においては、[¹⁴C]-S-777469 濃度は 20 μ M,反応時間は 4 時間に設定された.ヒト凍結肝細胞における代謝物生成プロファイルを Fig. 3 および Table 4 に示す.反応後の S-777469 のピークが占める割合は全体の 62%であった.また、ヒト凍結肝細胞においては、合計 8 個の代謝物ピークが認められた.ヒト凍結肝細胞における主代謝物は 5-HM であり、その割合は全体の 14%であった.その他の代謝物の生成量はいずれも全体の 5%以下であった.5-CA の割合は全体の 0.7%であった.以上のことから、ヒト凍結肝細胞を用いた *in vitro* 試験における基質濃度および反応時間はヒトにおける肝臓中最大濃度および 5-CA の T_{max}値と同等であったが、*in vitro* 間において 5-CA 生成に乖離が認められた.

19

Fig. 3. Representative HPLC radiochromatogram of reaction mixture extract after incubation of [¹⁴C]-S-777469 with cryopreserved human hepatocytes.

Table 4	Percentage of radioactivity	due to S-777469	and its metabolites	after incubation

Metabolite	Retention time	% of total	Mass difference	Identification	
Wietabolite	(min)	radioactivity	Wass unterence		
M1	4.30	1.1	+32	+20	
M2	5.00	3.7	+32	+20	
M3	10.2	3.8	+16	4-HC	
M4	11.0	2.1	+192	5-HM-AG	
M5	15.3	2.8	+16	6-HE	
M6	19.2	14	+16	5-HM	
M7	25.0	2.7	+176	AG	
M8	39.4	0.7	+30	5-CA	
[¹⁴ C]-S-777469	51.8	62			

of [¹⁴C]-S-777469 with cryopreserved human hepatocytes.

4-HC, S-777469 4-hydroxycyclohexane; 5-HM-AG, S-777469 5-hydroxymethyl

acyl-glucuronide; 6-HE, S-777469 6-hydroxyethyl; 5-HM, S-777469 5-hydroxymethyl; AG, acyl-glucuronide; 5-CA, S-777469 5-carboxylic acid.

第4節 考察

これまで、いくつかの医薬品において、代謝物プロファイルがヒト肝 Ms やヒ ト凍結肝細胞などの *in vitro* 試験系での結果とヒト血漿などの *in vivo* 試料での結 果で異なることが報告されている(Dalvie, Obach et al. 2009). この代謝物プロフ ァイルの *in vitro/in vivo* 乖離の原因として、未変化体と生成する代謝物の物性や 反応性などの特性の違いから、いくつかの可能性が考えられる.本章では、 S-777469 において、*in vitro/in vivo* 間で代謝物プロファイルが乖離した原因を明 らかにするため、代謝物の生体内蓄積の可能性および *in vitro* 試験の条件が生体 条件を反映していない可能性について精査した.

まず, S-777469の臨床薬物動態試験における S-777469 および代謝物の消失半 減期を基に,代謝物が生体内で蓄積した可能性を検証した.その結果, S-777469 および定量した全ての代謝物において,消失半減期は 7.6 ~ 9.7 hr と同程度であ り,代謝物がヒト血漿内で蓄積した可能性は低いことが示された(Fig. 2, Table 3).また,一般的に代謝物は未変化体よりも脂溶性が低下するため,組織移行 性が低くなり血漿中の曝露量が高くなる場合がある.しかし,排泄物中の未変 化体および代謝物量を測定したところ, 5-CA の排泄量は投与量の約 10%であっ た.このことは,生体では投与された S-777469 の約 10%が 5-CA に代謝されて いることを示唆しており,代謝物生成量に *in vitro/invivo* 間で乖離があったこと を裏付けている.

つぎに, 基質濃度および反応時間など, *in vitro* 試験の条件が生体で 5-CA が生成した条件を反映していなかった可能性について検証した.まず, S-777469の 臨床薬物動態試験の結果を基に, S-777469の肝臓中最大濃度を見積もった結果, S-777469の肝臓中最大濃度は約 9.4 μM と推察された.また, 5-CA の T_{max} 値か ら, ヒトにおいて, S-777469は肝臓に 4 時間曝露されれば充分 5-CA を生成する と推察された.一方,ヒト凍結肝細胞を用いた *in vitro* 代謝物分析においては, 基質濃度は 20 µM,反応時間は 4 hr であった.一方,ヒト凍結肝細胞における 主代謝物は 5-HM であり,その他の代謝物の生成量は 5%以下であった.このこ とから,ヒト凍結肝細胞を用いた *in vitro* 代謝試験は,ヒトで 5-CA が生成する 条件を網羅できていたのにも関わらず, *in vitro/in vivo* 間において 5-CA 生成に乖 離が認められた.

これまで、複数の医薬品において、*in vitro/in vivo*間で代謝物プロファイルが 乖離した事例が報告されている. Dalvie らはヒト肝 Ms やヒト肝細胞など *in vitro* 試験系におけるヒト代謝物の予測精度は、一次代謝物では 75%、二次代謝物で は 38%と報告している (Dalvie, Obach et al. 2009). この *in vitro/in vivo* 乖離の原 因は完全には明らかとなっていないが、*in vitro/in vivo*間の環境の違いで十分に 酵素活性が発揮されない薬物代謝酵素が存在することが発表されている (水垂 ら、第 16 回 HAB 研究機構学術年会、2009) ことから、5-HM および 5-CA 生成 に関わる薬物代謝酵素を同定することでその原因を明らかにできる可能性があ ると考えられる.

本研究によって, S-777469 において, *in vitro/in vivo* 間で代謝物プロファイル に乖離が生じた原因は, *in vitro* 試験系では十分予測できない二次代謝反応が生 体で起きた可能性が高いと推察された.一方, ある種の医薬品においては,反 応性の高い代謝物が生体内で蓄積する事例も報告されている.そのため,今後, ヒト代謝物を精度高く予測するには,代謝物の蓄積性や組織移行性, *in vitro* 試 験の条件などを網羅的に考察する必要があると考えられる.

第5節 まとめ

ヒト血漿において, S-777469, 5-HM および 5-CA に生体内蓄積の傾向は認め

22

られなかった.また、ヒト凍結肝細胞を用いた in vitro 試験における反応条件は 生体の条件と同等であり、in vitro 試験に問題はないことが示唆された.そのた め、S-777469 においては、in vitro 試験では予測が困難な二次代謝反応が生体で 起きたと推察された.これまで、in vitro/in vivo 環境の違いにより、in vitro の状 況下では酵素機能を十分発揮できない薬物代謝酵素があることが報告されてい るため、S-777469 代謝に関与する薬物代謝酵素の同定が、in vitro/in vivo 乖離の 原因解明の一助になることが示唆された. 第2章 ヒトにおける S-777469 主代謝物の生成機序および *in vitro/in vivo* 乖離の 原因の解明

第1節 序論

これまで、生体において、医薬品から生成する代謝物が副作用を起こすこと が数多く報告されている(Amacher 2012).また、副作用リスクと同様に、代謝 物による薬物間相互作用の事例も報告されている (Ogilvie, Zhang et al. 2006). そのため、より安全で薬物相互作用リスクの少ない医薬品を創製するためには、 未変化体のみだけでなく、代謝物の安全性、薬物間相互作用評価が重要と考え られる. 通常, ヒト代謝物の生成予測はヒト肝臓から単離したヒト肝 Ms やヒト 凍結肝細胞が使用されている.これら in vitro 試験系においては,代謝物生成に 関わる種々薬物代謝酵素が機能的に発現していることが知られている.一方, いくつかの医薬品において、ヒト代謝物が上記試験系で予測できない事例、代 謝物生成に関する *in vitro/in vivo* 間の乖離が報告されている(Dalvie, Obach et al. 2009). 抗 HIV 治療薬として開発された S-1360 は, ヒト血漿中の主代謝物は還 元代謝物であるが、好気的条件で培養したヒト凍結肝細胞においては、本代謝 物は検出されなかった(水垂ら, 第16回 HAB 研究機構学術年会, 2009). これ まで, S-1360の還元体生成には aldo-keto reductase (AKR) が関与することが明ら かとなっており, in vitro/in vivoの環境の違いにより一部の薬物代謝酵素は十分 な酵素活性を発揮できないことが推察されている (Rosemond, St John-Williams et al. 2004). そのため, 代謝物生成に関与する代謝酵素を同定することで, in vitro/in vivo 乖離の原因を解明できる可能性が高い.

そこで本章では, S-777469 代謝物生成に関する *in vitro/in vivo* 乖離の原因を解 明することを目的とし,まず, 5-HM, 5-CA 生成に関与する薬物代謝酵素の同定

24

を行った. つぎに, *in vitro/in vivo* 乖離の原因究明のため, CYP2C9 活性に及ぼ す血清アルブミン,長鎖脂肪酸の影響を検証した.

Fig. 4. Putative metabolic pathway of S-777469 to 5-CA and drug-metabolizing enzymes involved in the formation of 5-CA. P450, cytochrome P450; ADH, alcohol dehydrogenase; AKR, aldo-keto reductase; ALDH, aldehyde dehydrogenase; AO, aldehyde oxidase; β -NADPH, nicotinamide adenine dinucleotide phosphate (reduced form); β -NADP⁺, nicotinamide adenine dinucleotide phosphate (oxidized form); NAD⁺, nicotinamide adenine dinucleotide (oxidized form); 5-HM, S-777469 5-hydroxymethyl; 5-CA, S-777469 5-carboxylic acid.

第1項 化合物および試薬

S-777469, 5-HM および 5-CA は塩野義製薬株式会社にて合成された. ヒト肝 Ms, ヒト肝 S9 画分は XenoTech, LLC より購入した. 各種組換え P450 酵素 (supersome) は BD Gentest (Wolburn, MA, USA) より購入した. β-NADPH, β-NADP⁺はオリエンタル酵母工業 (Tokyo, Japan)より, NAD⁺は Roche diagnostics (Mannheim, Germany), NADH は sigma Aldrich (St. Louis, MO, USA) より購入した. その他の試薬および溶媒は HPLC 用, LC-MS/MS 用あるいは特級品の市販品を 使用した.

第2項 5-HM, 5-CA 生成時の補酵素依存性試験

5-HM, 5-CA 生成時の補酵素依存性試験にはヒト肝 S9 画分を使用した. S-777469 および 5-HM はジメチルスルホキシド (Dimethyl sulfoxide, DMSO) に 溶解し,反応中の最終 DMSO 濃度は 0.1% (v/v)とした. ヒト肝 S9 画分(1.0 mg/ml) に S-777469 もしくは 5-HM (100 μ M) と 1 mM 各種補酵素溶液 (β -NADP⁺, β -NADPH, NAD⁺, NADH) を含む 0.1 M リン酸カリウム緩衝液 (pH 7.4) を 37°C で 0.5 時間反応させた. また, 補酵素の組み合わせ検討時も同様のタンパク濃度, 基質濃度, 補酵素濃度で実施した. 反応後, 氷冷した 2 倍量のアセトニトリル/ メタノール (1:1, v/v) を添加し, 3,000 rpm で 10 分間遠心した後, 上清を LC-MS/MS にて測定した.

第3項 各種 P450 組換え酵素, P450 阻害剤および抗 P450 抗体を用いた主代謝

S-777469 および 5-HM は DMSO に溶解し、反応中の最終 DMSO 濃度は 0.1% (v/v) とした. P450 組換え酵素 (コントロール, rCYP1A2, rCYP2C8, rCYP2C9, rCYP2C19, rCYP2D6, rCYP2E1, rCYP3A4, 100 pmol/ml) に S-777469 もしくは 5-HM (100 µM) と 1 mM β-NADPH を含む 0.1 M リン酸カリウム緩衝液 (pH 7.4) を 37°C で 1 時間反応させた.反応後,氷冷した 2 倍量のアセトニトリル/メタノ ール (1:1, v/v) を添加し, 3,000 rpm で 10 分間遠心した後,上清を LC-MS/MS にて測定した.各種 P450 阻害剤もしくは抗 P450 抗体を用いた阻害試験におい ては,ヒト肝 Ms を用いた. S-777469 および 5-HM は 10% アセトニトリル水溶 液に溶解した.ヒト肝 Ms 画分 (0.5 mg/ml), S-777469 もしくは 5-HM (40 µM), 2 mM β-NADPH および Table 5 に示す各種 P450 阻害剤もしくは抗 P450 抗体を 含む 50 mM Tris-HCl 緩衝液 (pH 7.4) を 37°C で 20 分反応させた.反応後,氷 冷した 2 倍量のアセトニトリル/メタノール (1:1, v/v) を添加し, 3,000 rpm で 10 分間遠心した後,上清を LC-MS/MS にて測定した.

P450 inhibitor	Target P450	Concentration	Pretreatment condition	
or antibody				
			preincubation for 15 min at 37°C	
furafylline	CYP1A2	50 µM	with microsomes and β -NADPH	
			prior to initiation with substrate	
anti CVD2C8		antibody:protoin	preincubation for 15 min at r. t.	
monoclonal antihodu	CYP2C8	rotio - 1.5	with microsomes prior to initiation	
monocional antibody		1410 – 1.5	with substrate and β -NADPH	
aulforherozolo	CYP2C9	20 µM	preincubation at 37°C for 5 min	
sunaphenazoie			prior to initiation with β -NADPH	
h an an da imaga a l			preincubation at 37°C for 5 min	
benzyinirvanoi	CYP2C19	10 μΜ	prior to initiation with $\boldsymbol{\beta}$ -NADPH	
quiniding	CVDD6	2 M	preincubation at 37°C for 5 min	
quiniaine	CTP2D0	5 μινι	prior to initiation with $\boldsymbol{\beta}$ -NADPH	
anti CVD2E1		antibodyunrotain	preincubation for 15 min at r. t.	
anu-CTP2E1	CYP2E1	antibody:protein	with microsomes prior to initiation	
monocional antibody		ratio = 1:5	with substrate and β -NADPH	
leste con our -1 -		1	preincubation at 37°C for 5 min	
ketoconazole	CYP3A4	ΙμΜ	prior to initiation with β -NADPH	

Table 5. The list of each P450 inhibitors and anti-P450 monoclonal antibody.

r.t., room temperature

第4項 血清アルブミン添加時の 5-HM, 5-CA 生成変動

本研究では、S-777469 代謝に及ぼす血清アルブミンの影響を検証するため、

ウシ血清アルブミン(BSA)を使用した.また,BSA 添加時の 5-HM, 5-CA 生 成試験にはヒト肝 Ms 画分を使用した.S-777469 および 5-HM は DMSO に溶解 し,反応中の最終 DMSO 濃度は 0.1% (v/v) とした.ヒト肝 Ms (0.5 mg/ml) に S-777469 もしくは 5-HM (300 µM) と 1 mM β-NADPH を含む 50 mM トリス塩 酸緩衝液 (pH 7.4)を 37°C で反応させた.S-777469 および 5-HM の反応時間は それぞれ 15,30 分とした.反応後,氷冷した 2 倍量のアセトニトリル/メタノー ル (1:1, v/v)を添加し,3,000 rpm で 10 分間遠心した後,上清を LC-MS/MS に て測定した.0.3% BSA 添加時の酵素速度論的解析には 1~300 µM S-777469 およ び 1~500 µM 5-HM を使用した.いずれも DMSO に溶解し,反応中の最終 DMSO 濃度は 0.1% (v/v) とした.タンパク濃度,反応時間は上記と同様に設定した.

第5項 CYP2C9 組換え酵素における血清アルブミン添加時の S-777469 代謝の 変動

S-777469 および 5-HM は DMSO に溶解し,反応中の最終 DMSO 濃度は 0.1% (v/v) とした. CYP2C9 組換え酵素(100 pmol/ml) に S-777469(10, 100 μM) と 1 mM β-NADPH を含む 0.1 M リン酸カリウム緩衝液(pH 7.4) を 37°C で 30 分間反応させた.反応後,氷冷した 2 倍量のアセトニトリル/メタノール(1:1, v/v) を添加し, 3,000 rpm で 10 分間遠心した後,上清を LC-MS/MS にて測定した.

第6項 CYP2C9 組換え酵素における長鎖脂肪酸添加時の 5-HM, 5-CA 生成速 度の変動

各種長鎖脂肪酸添加時の 5-HM, 5-CA 生成試験には CYP2C9 組換え酵素を使用した. S-777469 および 5-HM は DMSO に溶解し,反応中の最終 DMSO 濃度は

0.1% (v/v) とした. CYP2C9 組換え酵素 (100 pmol/ml) を含む 0.1 M リン酸カ リウム緩衝液 (pH 7.4) に 0~30 μM アラキドン酸, α-リノレン酸, オレイン酸, ミリスチン酸を添加し 37°C で約 5 分間反応させた. つぎに, S-777469 もしくは 5-HM (10 μM) と 1 mM β-NADPH を添加し, 37°C で 15 分間反応させた. 反応 後, 氷冷した 2 倍量のアセトニトリル/メタノール (1:1, v/v) を添加し, 3,000 rpm で 10 分間遠心した後, 上清を LC-MS/MS にて測定した.

第7項 LC-MS/MS を用いた定量

サンプルの測定には Acquity UPLC システムおよび Micromass Quattro Ultima (Waters Corporation, Milford, MA, USA)を用いた.カラムは YMC-Triart C18 カラ ム (50 mm×2.0 mm i.d, 1.9 μ m, YMC CO., LTD., Kyoto, Japan)を 0.75 ml/min にて 使用した.移動相は水/ギ酸 (99.9/0.1, v/v)およびアセトニトリル/ギ酸 (99.9/0.1, v/v)を使用した.まず,2分に渡り有機相を 5%から 95%まで引き上げた.その 後,0.5分間,5%の有機相を流した.質量分析は陽イオン検出モードのエレクト ロスプレーイオン化法を用いて,各化合物の選択的な m/z をモニターし,標品 と照合した.

第8項 データ解析

酵素学的速度論の解析には, WinNonlin Version5.2 (Certara, St. Louis, MO, USA) を使用した.また,種々の統計解析には, XLSTAT (無料ソフトウェア)を使用 した. 第3節 結果

第1項 5-HM および 5-CA 生成に関わる主代謝酵素同定

1) 5-HM および 5-CA 生成時の補酵素依存性試験

まず, 5-HM, 5-CA 生成時の各種補酵素の依存性を解析した. その結果, β -NADP⁺, β -NADPH, NAD⁺, NADH 単独添加時においては, 両代謝物ともに, β -NADPH 添加群の生成が最も高値を示した. また, β -NADPH 添加群の 5-HM 生成および5-CA 生成はそれぞれ 4.04, 1.82 pmol/min/mg protein であった (Fig. 5). また, 複数の補酵素存在下の 5-HM および 5-CA 生成を検討した. その結果, β -NADPH 添加群, β -NADPH および β -NADP⁺添加群, β -NADPH, β -NADP⁺およ び NAD⁺添加群の 5-CA 生成量はと 1.6 ~ 1.9 pmol/min/mg と同程度を示した. 一 方, β -NADP⁺および NAD⁺添加群における 5-CA 生成量は 0.3 pmol/min/mg と, 上記 3 群に比較して低値を示した (Fig. 6). 以上の結果から, 5-HM および 5-CA は P450 の機能発現に必要な β -NADPH 存在下で生成することが明らかとなった.

31

Fig. 5. Effect of cofactors on 5-HM and 5-CA formation by human liver S9 fractions. Data represents mean \pm S.D. (N = 3). β -NADPH, nicotinamide adenine dinucleotide phosphate (reduced form); β -NADP⁺, nicotinamide adenine dinucleotide phosphate (oxidized form); NAD⁺, nicotinamide adenine dinucleotide (oxidized form); NADH, nicotinamide adenine dinucleotide (reduced form); 469, S-777469; 5-HM, S-777469 5-hydroxymethyl; 5-CA, S-777469 5-carboxylic acid.

Fig. 6. Effect of cofactor combination on 5-CA formation by human liver S9 fractions. Data represents mean \pm S.D. (N = 3). β -NADPH, nicotinamide adenine dinucleotide phosphate (reduced form); β -NADP⁺, nicotinamide adenine dinucleotide phosphate (oxidized form); NAD⁺, nicotinamide adenine dinucleotide (oxidized form); 5-HM, S-777469 5-hydroxymethyl; 5-CA, S-777469 5-carboxylic acid.

2) 各種 P450 組換え酵素, P450 阻害剤および抗 P450 抗体を用いた主代謝酵素同 定試験

各種 P450 組換え酵素による 5-HM および 5-CA 生成を検討した.本研究にお いては,コントロールスーパーソーム,rCYP1A2,rCYP2C8,rCYP2C9,rCYP2C19, rCYP2D6,rCYP2E1,rCYP3A4 を用いた.その結果,rCYP2C9 および rCYP2C19 添加群においてのみ, 5-HM 生成が認められた.また,rCYP2C9 および rCYP2C19 添加群における 5-HM 生成量はそれぞれ 49 および 71 pmol/min/nmol P450 であっ た. 一方, 5-CA 生成は rCYP2C9 添加群においてのみ認められ, 5-CA 生成量は 22 pmol/min/nmol P450 であった(Fig. 7). つぎに, 両代謝物生成に及ぼす各種 P450 阻害剤もしくは抗 P450 抗体の影響を検証した. その結果, ヒト肝 Ms にお いて, 5-HM および 5-CA 生成はともに CYP2C9 阻害剤である sulfaphenazole に よって 95%以上が阻害された(Table 6). また, P450 組換え酵素を用いた検討 から, 5-HM 生成に関与すると示唆された CYP2C19 に関しては, CYP2C19 阻害 剤である benzylnirvanol 添加時の両代謝物生成はともに 10%未満であった. この ことから, 5-HM および 5-CA 生成に関わる主代謝酵素は CYP2C9 であることが 明らかとなった. さらに, 5-CA 生成に対する肝外組織の寄与を検証するため, CYP2C9 発現組織である小腸 Ms における 5-CA 生成を検証した. しかし, 小腸 Ms においては, 5-CA は生成しなかった (Data not shown).

Fig. 7. 5-HM and 5-CA formation by each recombinant P450 enzymes. Data represents mean ± S.D. (N = 3). 1A2, rCYP1A2; 2C8, rCYP2C8; 2C9, rCYP2C9; 2C19, rCYP2C19; 2D6, rCYP2D6; 2E1, rCYP2E1; 3A4, rCYP3A4; 469, S-777469; 5-HM, S-777469 5-hydroxymethyl; 5-CA, S-777469 5-carboxylic acid.

D450 in hit is a second back	% of inhibition from appropriate control				
P450 inhibitor or antibody	5-HM formation	5-CA formation			
furafylline	17	6.2			
anti-CYP2C8 monoclonal antibody	1.5	2.3			
sulfaphenazole	97	95			
benzylnirvanol	9.2	8.7			
quinidine	0.1	0.2			
anti-CYP2E1 monoclonal antibody	2.5	0.3			
ketoconazole	1.4	2.0			

Table 6. Effect of chemical inhibitors and monoclonal antibody on the formation of5-HM and 5-CA.

5-HM, S-777469 5-hydroxymethyl; 5-CA, S-777469 5-carboxylic acid.

第2項 血清アルブミン添加による 5-HM, 5-CA 生成変動

1) ヒト肝 Ms における 5-HM, 5-CA 生成に及ぼす血清アルブミン濃度の影響

これまで CYP2C9 の酵素活性は血清アルブミンにより変動することが報告さ れている.そこで、5-HM、5-CA 生成に及ぼす BSA の影響を検証するため、ま ず、5-HM、5-CA 生成に及ぼす BSA 濃度の影響を検証した.健常者における血 漿中アルブミン濃度は3~5%と報告されているため、本研究では、BSA の添加 濃度を0,0.01,0.03,0.1,0.3,1,3%と設定した(山川ら、生化学データブック 第 5 刷、1989).また、BSA 添加により反応中の基質濃度が変動することが考えら れたので、試験系における基質のタンパク結合率を測定し、総濃度もしくは非 結合型の単位基質濃度あたりの代謝物生成速度(V/[Stotal]値、V/[Sfree]値)を算出 した. その結果, 5-HM 生成においては, 0~3% BSA 添加時の V/[S_{total}]値は 0.14 ~0.18 μl/min/mg であり, ほぼ変動しなかった. 一方, 5-CA 生成においては, BSA 非添加時の V/[S_{total}]値は 0.03 μl/min/mg であったが, 0.1% BSA 添加により V/[S_{total}]値は 0.11 μl/min/mg まで上昇したものの, 0.03%以上では, 添加濃度に伴 い V/[S_{total}]値は低下し, 3% BSA 添加により 0.06 μl/min/mg まで低下した (**Fig. 8**).

0~3% BSA 含有ヒト肝 Ms における S-777469 および 5-HM のタンパク非結合 率はそれぞれ 96%から 18%, 80%から 49%まで低下した(Fig. 9).

5-HM 生成における V/[S_{free}]値は 0.20 µl/min/mg から 0.90 µl/min/mg まで BSA 濃度依存的に上昇した.一方, 5-CA 生成における V/[S_{free}]値はコントロール群 では 0.04 µl/min/mg であったが, 0.3% BSA 添加時に最大値を示した. 0.3% BSA 添加時の V/[S_{free}]値は 0.14 µl/min/mg であった (**Fig. 10**).

Fig. 8. The effect of BSA concentration on the velocity per total concentration of 5-HM
(A) and 5-CA formation (B) by human liver microsomes. Data represents mean ± S.D. (N
= 3). 469, S-777469; 5-HM, S-777469 5-hydroxymethyl; 5-CA, S-777469 5-carboxylic acid.

Fig. 9. The effect of BSA concentration on the binding of S-777469 (A) and 5-HM (B) in *in vitro* system. Data represents mean ± S.D. (N = 3). 469, S-777469; 5-HM, S-777469
5-hydroxymethyl.

Fig. 10. The effect of BSA concentration on the velocity per free concentration of 5-HM
(A) and 5-CA (B) formation by human liver microsomes. Data represents mean ± S.D. (N
= 3). 469, S-777469; 5-HM, S-777469 5-hydroxymethyl; 5-CA, S-777469 5-carboxylic acid.

2) ヒト肝 Ms における 0.3% BSA 添加時の 5-HM, 5-CA 生成変動

5-HM, 5-CA 生成時の P450 との親和性および最大代謝速度に及ぼす BSA の影響を検証するため、5-CA 生成速度に対して最も大きな影響が観察された 0.3% BSA 添加時の 5-HM、5-CA 生成の酵素学的速度論解析を実施した.本試験においても、BSA 添加により反応中の基質濃度が変動することが考えられたので、 試験系における基質のタンパク結合率を測定し、総濃度もしくは非結合型基質 濃度における親和性および最大代謝速度を算出した.その結果、5-HM 生成において、コントロールおよび 0.3% BSA 添加時の Km 値はそれぞれ 23.0 および 11.0 μ M であり、BSA 添加により Km 値が 47.8%まで低下した.一方、両群における Vmax 値はそれぞれ 49.8 および 48.8 pmol/min/mg であり、BSA 添加によりほぼ変 動しないことが明らかとなった (Fig. 11, Table 7).また、5-CA 生成においては、 コントロールおよび 0.3% BSA 添加時の Km 値はそれぞれ 352 および 111 μ M で あり、5-HM と同様に、BSA 添加により Km 値が 31.5%に低下した.さらに、Vmax 値はそれぞれ 19.7 および 50.0 pmol/min/mg であり、BSA 添加により 5-CA の最 大代謝速度が 254%まで上昇した.

コントロールおよび 0.3% BSA 含有ヒト肝 Ms における S-777469 および 5-HM のタンパク非結合率を測定した.その結果,コントロールおよび 0.3% BSA 含有 ヒト肝 Ms における S-777469 のタンパク非結合率はそれぞれ 96 ~ 103%,45 ~ 57% であった (Fig. 12).一方,コントロールおよび 0.3% BSA 含有ヒト肝 Ms における 5-HM のタンパク非結合率はそれぞれ 78 ~ 98%,67 ~ 95% であった.

各反応時点での基質のタンパク非結合率の結果から,非結合型基質濃度を基 に親和性および最大代謝速度を算出した.その結果,5-HM 生成においては,コ ントロールおよび0.3% BSA 添加時の Km 値はそれぞれ 23.1 および 5.61 μM であ り,BSA 添加により Km 値が 24.3%まで低下した.一方,両群における Vmax 値 はそれぞれ 50.0 および 48.2 pmol/min/mg でありほぼ変動しなかった(Fig. 13, Table 7).また,5-CA 生成においては,コントロールおよび 0.3% BSA 添加時の K_m値はそれぞれ 273 および 79.9 µM を示し,5-HM と同様に,BSA 添加により K_m値が 29.3%まで低下した.さらに,V_{max}値はそれぞれ 19.0,49.2 pmol/min/mg と,BSA 添加により 5-CA の最大代謝速度が 259%まで上昇した.

Fig. 11. Enzyme kinetics of 5-HM (A) and 5-CA (B) formation by human liver microsomes in the absence and presence of 0.3% BSA. Data represents mean \pm S.D. (N = 3). Open circle and square represent the formation velocity of 5-HM from S-777469 in the absence or presence of BSA, respectively. Closed circle and square represent the formation velocity of 5-CA from 5-HM in the absence or presence of BSA, respectively. Points are experimentally determined values, whereas lines are from model fitting. 469; S-777469, 5-HM, S-777469 5-hydroxymethyl; 5-CA, S-777469 5-carboxylic acid.

Fig. 12. The effect of 0.3% BSA on the binding of S-777469 (A) and 5-HM (B) in human liver microsomes. Data represents mean \pm S.D. (N = 3). Open circle and square represent the unbound fraction ratio of S-777469 in the absence or presence of BSA, respectively. Closed circle and square represent the unbound fraction ratio of 5-HM in the absence or presence of BSA, respectively.469; S-777469, 5-HM, S-777469 5-hydroxymethyl; 5-CA, S-777469 5-carboxylic acid.

Fig. 13. Enzyme kinetics of 5-HM (A) and 5-CA (B) formation by human liver microsomes in the absence and presence of 0.3% BSA. Data represents mean \pm S.D. (N = 3). Open circle and square represent the formation velocity of 5-HM from S-777469 in the absence or presence of BSA, respectively. Closed circle and square represent the formation velocity of 5-CA from 5-HM in the absence or presence of BSA, respectively. Points are experimentally determined values, whereas lines are from model fitting. 469; S-777469, 5-HM, S-777469 5-hydroxymethyl; 5-CA, S-777469 5-carboxylic acid.

Table 7. The effect of 0.3% BSA on the enzymatic kinetic parameters of 5-HM (A) and 5-CA (B) formation by human liver microsomes.

(A)

	Total concentration						Free concentration					
Parameter	Control			0.3% BSA			Control			0.3% BSA		
	Mean	SE	CV (%)	Mean	SE	CV (%)	Mean	SE	CV (%)	Mean	SE	CV (%)
$K_m(\mu M)$	23.0	0.61	2.67	11.0	0.66	5.99	23.1	0.56	2.44	5.61	1.24	22.2
V _{max} (pmol/min/mg)	49.8	0.36	0.73	48.8	0.69	1.42	50.0	0.33	0.67	48.2	2.33	4.83
CL _{int} (µl/min/mg)	2.17			4.42			2.16			8.60		
(B)												
	Total concentration						Free concentration					
Parameter	Control				0.3% BSA			Control			0.3% BSA	
	Mean	SE	CV (%)	Mean	SE	CV (%)	Mean	SE	CV (%)	Mean	SE	CV (%)
$K_m(\mu M)$	352	69.4	19.7	111	6.36	5.75	273	56.7	20.7	79.9	4.19	5.24
V _{max} (pmol/min/mg)	19.7	2.01	10.2	50.0	1.04	2.07	19.0	1.98	10.4	49.2	0.90	1.83
CL _{int} (µl/min/mg)	0.06			0.45			0.07			0.62		

 K_m , apparent substrate concentration at half-maximal velocity; V_{max} , maximal velocity; CL_{int} , intrinsic clearance; CV, coefficient of variation.

3) CYP2C9 組換え酵素における 0.3% BSA 添加時の 5-HM, 5-CA 生成変動

CYP2C9による S-777469の代謝に及ぼす BSA の影響を検証するため, CYP2C9 組換え酵素において, 0.3% BSA を添加した時の 5-HM, 5-CA 生成を検証した. 本試験においては, 10, 100 µM S-777469 からの 5-HM, 5-CA 生成量を測定した. その結果,両基質濃度において, 0.3% BSA 添加により 5-HM 生成速度は 2.3 倍 上昇した (Fig. 14). また, 5-CA 生成においては, 0.3% BSA 添加により, 5-CA 生成速度はそれぞれ 2.8 ~ 3.2 倍上昇した (Fig. 14).

Fig. 14. The effect of 0.3% BSA on the formation of 5-HM (A) and 5-CA (B) by recombinant CYP2C9. 469, S-777469; 5-HM, S-777469 5-hydroxymethyl; 5-CA, S-777469 5-carboxylic acid.

第3項 CYP2C9 組換え酵素における 5-HM, 5-CA 生成に及ぼす各種脂肪酸の 影響

前項において, BSA が S-777469 代謝を亢進することが明らかとなった.また, これまでの上述の検討の結果,ヒト肝 Ms や P450 組換え酵素において,BSA は 内在性脂肪酸を吸着し P450 活性を向上することが示唆されている.そこで,ヒ ト肝 Ms に多く含まれていると報告されている 4 種の長鎖脂肪酸を用いて, S-777469 代謝に及ぼす長鎖脂肪酸の影響を検証した (Rowland, Gaganis et al. 2007, Bushee, Liang et al. 2014).本試験においては,ヒト肝 Ms に多く含まれることが 報告されている 0 ~ 30 μ M のアラキドン酸, α -リノレン酸, τ レイン酸, ミリス チン酸を使用した.その結果, 5-HM 生成および 5-CA 生成ともに,長鎖脂肪酸 の添加濃度依存的に生成量が低下した (Fig. 15).また,代謝物生成阻害に対す る各種長鎖脂肪酸の IC₅₀ 値を算出したところ,アラキドン酸の IC₅₀ 値が最も低 く,両代謝物生成に対する IC₅₀ 値はそれぞれ 6.2, 3.0 μ M であった (Table 8).さ らに, 5-HM および 5-CA 生成に対する各種長鎖脂肪酸の IC₅₀ 値を比較したとこ ろ,全ての長鎖脂肪酸において, 5-HM 生成に比較して, 5-CA 生成に対する IC₅₀

Fig. 15. The effect of fatty acid on the formation of 5-HM and 5-CA by recombinant CYP2C9. 469, S-777469; 5-HM, S-777469 5-hydroxymethyl; 5-CA, S-777469 5-carboxylic acid.

Fatty acid	IC_{50} for 5-HM production (μM)	IC_{50} for 5-CA production (μM)
arachidonic acid	6.2	3.0
α -linolenic acid	12	4.2
oleic acid	20	5.2
myristic acid	>30	12

Table 8. The IC_{50} values of each fatty acids for 5-HM and 5-CA formation by

IC₅₀, 50% inhibitory concentration

recombinant CYP2C9.

第4節 考察

本章では, S-777469 代謝物生成の *in vitro/in vivo* 乖離の原因を 5-HM および 5-CA 生成に関わる薬物代謝酵素の同定も含めて検討した.

まず,5-HM および5-CA 生成に関わる主代謝酵素を同定するため,各種補酵素存在時の代謝物生成を検討した.その結果,両代謝物はP450の機能発現に必要なβ-NADPH存在下で生成することが明らかとなった(Fig.5).また,各種P450 組換え酵素およびP450阻害剤もしくは抗P450抗体を用いた検討の結果,両代 謝物の生成は酸性医薬品の代謝に深く関わる CYP2C9 により触媒されることが 明らかとなった(Fig.7, Table 6).

これまで、ヒト肝 Ms や P450 組換え酵素において、CYP2C9 をはじめとする 多くの薬物代謝酵素の触媒活性が血清アルブミンにより向上すること、アラキ ドン酸やオレイン酸などの内在性長鎖脂肪酸により減弱することが報告されて いる(Yao, Chang et al. 2006, Tang, Lin et al. 2002, Wattanachai, Polasek et al. 2011, Wattanachai, Tassaneeyakul et al. 2012). Rowland らは、CYP2C9 組換え酵素を用い て、1.5 μM アラキドン酸、3 μM オレイン酸および 3 μM リノール酸混合溶液が CYP2C9により代謝を受ける抗てんかん薬 phenytoin の代謝を競合的に阻害する こと、また、BSA が上記長鎖脂肪酸混合溶液による競合阻害効果を消失させる ことを報告した(Rowland, Elliot et al. 2008).内在性長鎖脂肪酸がこれら *in vitro* 試験系に多く含まれる原因は完全には明らかとなっていないが、これら長鎖脂 肪酸は組織画分の調製やインキュベーションにより膜タンパクを構成するリン 脂質から遊離すると考えられている.さらに、ヒト肝 Ms における脂肪酸の含有 量や組成は、ヒト肝ロットや脂肪酸の種類によって異なるが、アラキドン酸は 32.9 μM、オレイン酸は 67.3 μM と報告されている(Rowland, Gaganis et al. 2007, Bushee, Liang et al. 2014).また、血清アルブミンはミクロソーム膜と相互作用す ることが知られている.そのため、血清アルブミンによる薬物代謝酵素活性の 向上機序は、上述した脂肪酸による阻害効果の減弱だけでなく、ミクロソーム 膜に存在する薬物代謝酵素と基質の親和性を変動させるためと考えられる.そ こで、つぎに、S-777469 代謝に及ぼす血清アルブミンおよび長鎖脂肪酸の影響 を精査した.

ヒトにおいて、血清アルブミンは血漿中に約3~5%程度含まれていることが 知られている(山川ら、生化学データブック 第5刷,1989).また、ヒト肝臓 中のアルブミン含量は解明されていないが、ラットにおいては、肝臓中アルブ ミン含量は血漿中アルブミン含量の 0.083 倍であることが報告されている

(Poulin, Kenny et al. 2011). そこで,本研究では,0~3% BSA 存在下での5-HM, 5-CA 生成変動を検討した.その結果,BSA の添加濃度依存的に基質濃度あたり の5-HM, 5-CA 生成速度が上昇した(Fig. 10).また,5-CA 生成速度に対して 最も大きな影響が観察された 0.3% BSA 添加時において,5-HM,5-CA 生成時の P450 との親和性および最大代謝速度を解析した.その結果,5-HM 生成に関し ては,0.3% BSA 添加により, V_{max} 値には変動がなかったものの, K_m 値は約 24.2% まで低下した(Fig. 13, Table 7).また,3% BSA 添加群においても,V_{max} 値およ び K_m 値の変動は同様であった (Data not shown). 一方, 5-CA 生成に関しては, 0.3% BSA 添加により, V_{max} 値は約 259%上昇, K_m 値は約 29.3%まで低下した. また, S-777469 を用いて, S-777469 の一次代謝反応および二次代謝反応に及ぼ す BSA の影響を検証した. その結果, BSA 添加により, BSA 非添加時に比較し て, 5-HM 生成量は 2.3 倍, 5-CA 生成量は 2.8 ~ 3.2 倍上昇した (Fig. 14). また, ヒト血清アルブミン, ラット血清アルブミン添加によっても代謝物生成の向上 は認められた (Data not shown). 以上の結果から, BSA は, ミクロソーム膜へ の基質薬物の移行を促進し, *in vitro* 試験系におけるヒト代謝物生成の予測精度 を向上できることが示唆された. さらに, 5-HM および 5-CA 生成に及ぼす長鎖 脂肪酸の影響を検証した結果, 今回検討したアラキドン酸, α -リノレン酸, オ レイン酸およびミリスチン酸は全て 5-HM, 5-CA 生成を阻害した (Fig. 15). ま た, 5-HM, 5-CA 生成に対する長鎖脂肪酸の IC₅₀ 値の比較から, 5-HM 生成に比 較して, 5-CA 生成はより長鎖脂肪酸による阻害を受けることが明らかとなった

(**Table 8**).

通常, 基質と代謝酵素の活性部位を取り合う競合阻害剤は代謝反応の K_m値を 上昇させ, 代謝酵素の活性部位以外に結合, 活性部位の構造などを変化させる 非競合阻害剤は代謝反応の V_{max}値を低下させることが知られている. 今回の結 果から, BSA 添加により, 5-HM 生成時において K_m値が低下したこと, 5-CA 生成時においては K_m値が低下, V_{max}値が上昇したことから, 5-HM 生成反応は 競合的な阻害, 5-CA 生成反応は競合および非競合的な阻害を受けていることが 考えられた. さらに, 複数の長鎖脂肪酸により 5-HM, 5-CA 生成が阻害された こと, これまで長鎖脂肪酸は競合的に P450 触媒活性を阻害することが報告され ていることから, *in vitro* 試験系において, 両代謝物の生成は長鎖脂肪酸による 競合的な阻害を受けていることが示唆された. 一方, BSA 添加により V_{max}値が 上昇した事例は未だ少ない. Walsky らは, ヒト肝 Ms および UGT2B7 (uridine diphosphate glucuronosyltransferase 2B7) 組換え酵素に 2% BSA 添加を添加するこ とで,UGT2B7 による atazanavir のグルクロン酸抱合代謝速度の V_{max} 値が BSA 非添加時に比較して 2.2 ~ 3.4 倍増加することを報告しているが,その機序は明 らかとはされていない (Manevski, Moreolo et al. 2011). 今後,基質薬物のミクロ ソーム膜への移行促進作用や血清アルブミンによる脂肪酸除去作用,薬物代謝 酵素タンパクの構造変化などの観点から,血清アルブミンによる酵素活性の向 上メカニズムが解明されることが望まれる.

今回の結果から, ヒト肝 Ms および CYP2C9 組換え酵素において, 酸性医薬品 の代謝に関わる CYP2C9 の酵素機能が内在性長鎖脂肪酸などにより抑制的に観 察されていることが示唆された.そのため,今後,より精度高く酸性医薬品の ヒト代謝物生成を予測するには,ヒト肝 Ms など in vitro 試験系に血清アルブミ ンを添加するとともに,血清アルブミンによる薬物代謝酵素の触媒活性の変動 機序を解明する必要があると考えられる.

第5節 まとめ

本章では、まず、酸性医薬品の代謝に関与する CYP2C9 が、S-777469 の代謝 に関与することが明らかとなった.また、アルブミンもしくは長鎖脂肪酸存在 下での S-777469 代謝試験の結果から、in vitro 試験系において 5-CA 生成が予測 できなかった原因は、in vitro 試験系での CYP2C9 の酵素機能が抑制的に観察さ れているためと推察された. CYP2C9 組換え酵素に BSA を添加することで S-777469 のヒト代謝物の予測精度を向上できたことから、酸性医薬品のヒト代 謝物を精度高く予測するには、in vitro 試験系に血清アルブミンを添加するなど、 in vitro 試験系の血清アルブミン、内在性脂肪酸含量を制御することが重要であ ることが明らかとなった. 第3章 HepaRG細胞およびヒト肝細胞移植マウスを用いた S-777469 代謝予測

第1節 序論

肝臓は薬物代謝を担う中心的な臓器である.一方,肝臓から単離された肝細 胞は,培養後,急激に薬物代謝能を失うため,これまで,肝細胞の薬物代謝能 を *in vitro*条件下で高く維持することは極めて困難であった (Ambrosino, Basso et al. 2005).近年,薬物代謝(代謝クリアランス,代謝物生成)に関する臨床予測 性向上のため,種々の *in vitro* 試験系の開発が行われている.

HepaRG 細胞はヒト肝癌由来の培養細胞であり、P450 や UGT などの薬物代謝 酵素の発現量がヒト肝細胞に近いことが報告されている(Hart, Li et al. 2010). また,アルブミンやグルコースの合成などの肝機能が維持されていること、ま た,ヒト肝細胞に比較してロットによるばらつきが少ないことが報告されてい る(Gripon, Rumin et al. 2002).ヒト肝キメラマウスは、遺伝的もしくは薬剤に より肝障害を誘発させた免疫不全マウスに、ヒト肝細胞を移植することでマウ ス肝細胞をヒト肝細胞で置換させたモデル動物である.これまで、複数のヒト 肝キメラマウスが作製されており、いずれのヒト肝キメラマウスにおいても、 ヒトP450がマウス肝臓に発現していることや血漿中にヒトアルブミンが分泌さ れるなどのヒト肝臓の機能が維持されていることが報告されている(Hasegawa, Kawai et al. 2011, Kikuchi, McCown et al. 2010).

これまでの検討結果から、S-777469 における *in vitro/in vivo* 代謝物プロファイ ルの乖離の原因は, *in vitro* 試験系において,内在性長鎖脂肪酸などにより S-777469 代謝に関わる CYP2C9 の酵素機能が抑制的に観察されているためと示 唆された.また,血清アルブミンを *in vitro* 試験系に添加することで,ヒト代謝 物生成の予測性向上に繋がることが示唆された.そこで,本章では,S-777469 をモデル薬物として、アルブミン分泌の維持が報告されている HepaRG 細胞お よびヒト肝キメラマウスがヒト代謝物生成予測に有用か検証した.

第2節 実験材料および実験方法

第1項 化合物および試薬

S-777469, 5-HM および 5-CA は塩野義製薬株式会社にて合成された. ヒト凍 結肝細胞は XenoTech, LLC より購入した. HepaRG 細胞は Gibco-Life Technologies (Grand Island, NY, USA) より購入した. ヒト肝キメラマウスは株式会社フェニッ クスバイオ (Hiroshima, Japan) より購入した. その他の試薬および溶媒は HPLC 用, LC-MS/MS 用あるいは特級品の市販品を使用した.

第2項 ヒト凍結肝細胞および HepaRG 細胞における S-777469 代謝物生成比較

ヒト凍結肝細胞は 1×10⁶ cells/ml の濃度にて William's E 培地 (pH 7.4) に懸濁 させた. 30 μ M S-777469 をヒト凍結肝細胞に添加し, 5% CO₂ インキュベーター 内で 37°C にて 4 時間反応させた. 一方, HepaRG 細胞は, 説明書に従って, 1 週間前培養した. まず, HepaRGTM Thaw, Plate, & General Purpose Working Medium にて HepaRG 細胞を融解し, 1×10⁶ cells/ml の濃度にてコラーゲン I でコートし たプレートに播種した. その後, 播種 1, 4, 6 日後に培地除去および HepaRGTM Maintenance/Metabolism Working Medium を添加した. 播種 7 日後, 培地を除去し, 30 μ M S-777469 含有 William's E 培地 (pH 7.4) を添加し, 5% CO₂ インキュベー ター内で 37°C にて 4 時間反応させた. 反応後, 氷冷した 4 倍量のアセトニトリ ルで停止し, 反応溶液を 10 分間 3,000 rpm にて遠心した. 測定は第 2 章第 2 節 LC-MS/MS を用いた定量の項に準ずる.

第3項 コントロールマウスおよびヒト肝キメラマウスにおける S-777469 薬物 動態試験

本動物実験は塩野義製薬株式会社動物実験適正運用員会の承認下で実施された.本試験においては、コントロールマウスとしてヒト肝細胞を移植していない免疫不全マウス(Severe Combined immune deficiency マウス, SCID マウス)を使用した.また、S-777469 は 0.5% MC 水溶液に 1 mg/ml となるように懸濁させた.経口投与用ゾンデを用いて、10 mg/kg の用量で S-777469 懸濁液をコントロールマウスおよびヒト肝キメラマウスに胃内に強制経口投与した.投与 0.5, 1, 2, 4, 8, 24 時間後、マウスにイソフルラン(エスカイン[®], Mylan, Osaka, Japan)麻酔を施し、ヘパリンナトリウム処理したガラス毛細管(Drummond Scientific Company, PA, USA)を用いて眼窩静脈叢より 25 µL を採血した.血液は、1,000×g, 4°C の条件で、10 分間の遠心分離を行った.全ての血漿サンプルは解析まで-80°C にて保存した.測定は第2章第2節 LC-MS/MSを用いた定量の項に準ずる.

第3節 結果

第1項 ヒト凍結肝細胞および HepaRG 細胞における S-777469 代謝物生成比較

ヒト代謝物生成予測に対する HepaRG 細胞の有用性を検証するため、ヒト凍結肝細胞および HepaRG 細胞における S-777469 代謝物生成を比較した. その結果, 2 ロットのヒト凍結肝細胞における 5-HM 生成量は 5,6 nmol/million cells であった(Fig. 16). 一方, HepaRG 細胞における 5-HM 生成量は 19 nmol/million cells

であり, ヒト凍結肝細胞の 3.2~3.8 倍を示した. 同様に, 2 ロットのヒト凍結肝 細胞における 5-CA 生成量は 81, 98 nmol/million cells であった. 一方, HepaRG 細胞における 5-HM 生成量は 859 nmol/million cells であり, ヒト凍結肝細胞の 8.8 ~11 倍を示した.

Fig. 16. Metabolite formation of S-777469 by cryopreserved human hepatocytes and
HepaRG cells. (A) and (B) represent 5-HM and 5-CA formation from S-777469, respectively.
Data represents mean ± S.D. (N = 3). 469, S-777469; 5-HM, S-777469 5-hydroxymethyl; 5-CA,
S-777469 5-carboxylic acid.

第2項 コントロールマウスおよびヒト肝キメラマウスにおける S-777469 薬物 動態試験

10 mg/kg S-777469 をコントロールマウスおよびヒト肝キメラマウスに単回 経口投与した後の S-777469 および代謝物の血漿中濃度推移および PK parameter を Fig. 17 および Table 9 に示す. コントロールマウスにおける S-777469, 5-HM および 5-CA の C_{max} 値はそれぞれ 283, 41.3 および 49.3 ng/ml であった. また, コントロールマウスにおける S-777469, 5-HM および 5-CA の AUC_{all} 値はそれぞ れ 1410, 164.8 および 214.0 ng·hr/ml であった. 一方, ヒト肝キメラマウスにおけ る S-777469, 5-HM および 5-CA の C_{max}値はそれぞれ 1739, 262.7 および 1383 ng/ml, S-777469, 5-HM および 5-CA の AUC_{all}値はそれぞれ 6701, 774.3 および 17143 ng·hr/ml であった. コントロールマウスおよびヒト肝キメラマウスにおいて, S-777469, 5-CA および 5-HM がどの程度曝露したかを検討するため, 3 化合物 の AUC_{all}の総和に対する各化合物の AUC_{all}比を算出した. その結果, コントロ ールマウスにおける S-777469, 5-HM および 5-CA の AUC_{all}比はそれぞれ 78.8, 12.0 および 9.21%であった. 一方, ヒト肝キメラマウスにおける S-777469, 5-HM および 5-CA の AUC_{all}比はそれぞれ 27.2, 69.6, 3.14%であり, ヒト主代謝物であ る 5-CA がヒト肝キメラマウスで最も高濃度に検出された.

Fig. 17. Mean plasma concentration-time profiles for S-777469 and its main metabolites after a single oral administration of S-777469 to control mice (A) and humanized liver mice (B). Data represents mean \pm S.D. (N = 3). 469, S-777469; 5-CA, S-777469 5-carboxylic acid; 5-HM, S-777469 5-hydroxymethyl.

Table 9 Pharmacokinetic parameters of S-777469 and its metabolites after a single oral administration of S-777469 to control mice and

humanized liver mice.

		Control mice		Humanized liver mice			
Pharmacokinetic parameter	S-777469	5-CA	5-HM	S-777469	5-CA	5-HM	
C _{max} (ng/ml)	283 ± 60.3	49.3 ± 4.04	41.3 ± 7.77	1739 ± 332.3	1383 ± 336.5	262.7 ± 52.54	
$AUC_{all} (ng \cdot hr/ml)$	$1410 \ \pm \ 119$	214.0 ± 15.61	164.8 ± 23.03	6701 ± 470.4	17143 ± 5225	774.3 ± 595	
T _{max} (hr)	1.0 (0.5, 2.0)	4.0 (4.0, 4.0)	2.0 (2.0, 2.0)	1.0 (0.5, 1.0)	4.0 (4.0, 8.0)	2.0 (1.0, 2.0)	
Percentage of AUC _{all}	78.8	12.0	9.21	27.2	69.6	3.14	
to AUC _{all, S-777469+5-CA+5-HM} (%)							

Data were expressed as the mean \pm S.D.

Median (min, max) was presented for T_{max} values.

5-CA, S-777469 5-carboxylic acid; 5-HM, S-777469 5-hydroxymethyl.

第2章までにおいて, S-777469 における *in vitro/in vivo* 代謝物プロファイルの 乖離の原因は, *in vitro* 試験系において,内在性長鎖脂肪酸などにより S-777469 代謝に関わる CYP2C9 の酵素機能が抑制的に観察されているためと示唆された. また,血清アルブミンが CYP2C9 触媒活性の向上に繋がることが示唆された. そこで,本章では,S-777469 をモデル薬物として,アルブミン分泌の維持が報 告されている HepaRG 細胞およびヒト肝キメラマウスがヒト代謝物生成予測に 有用か検証した.

まず,2ロットのヒト凍結肝細胞および HepaRG 細胞を用いて,S-777469 代謝 物生成量を比較した.その結果,HepaRG 細胞における 5-HM 生成量はヒト凍結 肝細胞の 3.2 ~ 3.8 倍を示した(Fig. 16).また,HepaRG 細胞における 5-HM 生 成量はヒト凍結肝細胞の 8.8 ~ 11 倍を示した.

っぎに、コントロールマウスおよびヒト肝キメラマウスにおける S-777469 代 謝物生成を比較した.その結果、コントロールマウスでは、5-HM および 5-CA の AUC_{all}比はそれぞれ 9.21%および 12.0%を示し、5-CA は 5-HM と同程度しか 生成されなかった(Fig. 17, Table 9).一方、ヒト肝キメラマウスでは、5-HM お よび 5-CA の AUC_{all}比はそれぞれ 3.14%および 69.6%を示し、ヒト主代謝物であ る 5-CA がヒト肝キメラマウスで最も高濃度に検出された.

本章の検討結果から, HepaRG 細胞およびヒト肝キメラマウスはともに, ヒト 凍結肝細胞に比較して, S-777469 の主代謝物である 5-CA をより高感度で検出す ることができ,臨床における代謝物プロファイルをより精度高く予測できるこ とが示唆された.しかし,ヒト代謝物プロファイルを精度高く予測するには, 両試験系の特徴を把握する必要がある.HepaRG 細胞を用いた *in vitro* での代謝 物分析では,代謝物の生成のみを検討できるため,代謝物の蓄積や体外排泄に 関する検証は困難である.一方,ヒト肝キメラマウスの課題点として,マウス 由来の肝細胞が残存する可能性があり,検出された代謝物がどちらの動物種に 起因するか検証する必要がある.そのため,医薬品開発においては,血清アル ブミンを添加したヒト肝 Ms や HepaRG 細胞,ヒト肝キメラマウスを用いて代謝 物評価の結果を総合的に検証し,ヒト代謝物を精度高く予測することが望まれ る.また,近年,ヒト肝細胞を三次元的に長期培養することで薬物代謝活性の みならずアルブミン合成量も増加させられることが報告されている.そのため, 今後,ヒト代謝物生成予測に対する長期培養ヒト肝細胞の応用研究も期待され る.

第5節 まとめ

HepaRG 細胞において, ヒト凍結肝細胞と比較して, S-777469 のヒト主代謝物 である 5-CA の生成量が向上した.また, ヒト肝キメラマウスにおける S-777469 の主代謝物は, ヒトと同様, 5-CA であった. HepaRG 細胞やヒト肝キメラマウ スなど, アルブミン合成が維持された試験系は, 臨床における代謝物プロファ イルをより精度高く予測し,より安全な医薬品創製, 医薬品開発の迅速化に貢 献できることが示唆された.

56

総括

これまで、多くの医薬品において、代謝物による重篤な副作用例が知られて いる.また、代謝物が未変化体に比較して高い DDI ポテンシャルを有する医薬 品も存在することも報告されている.近年、副作用および DDI 発現に及ぼす代 謝物の影響は非常に注目されており、医薬品候補化合物の安全性および DDI ポ テンシャルを代謝物も含め網羅的に担保するためにも、非臨床段階からヒト代 謝物を精度高く予測し、安全性および DDI ポテンシャルに及ぼす代謝物の影響 を精査することが重要である.しかし、これまでの報告から、ヒト肝 Ms やヒト 凍結肝細胞など *in vitro* 試料を用いた非臨床段階での代謝物分析では、充分にヒ ト代謝物を予測できない場合があることが明らかとなっている.そのため、よ り安全かつ DDI ポテンシャルの低い医薬品を創製する上で、非臨床段階でのヒ ト代謝物の予測精度向上は急務である.

S-777469 は、CB2 受容体に選択的に作用する酸性化合物であり、中枢性副作 用の低いアトピー性皮膚炎、掻痒治療薬として開発されている. ヒト肝 Ms およ びヒト凍結肝細胞を用いた代謝物分析の結果、5-HM が主代謝物として検出され、 5-CA の生成量は全体の 1%未満であった. 一方、ヒト血漿における主代謝物は 5-CA であり、上記 *in vitro* 試験系を用いたヒト代謝物の予測が困難であった. そ こで、本研究では、より安全で DDI ポテンシャルの低い医薬品創製に繋がるヒ ト代謝物プロファイルの予測精度向上を目的に、S-777469 において認められた *in vitro/in vivo* 間の代謝物プロファイルの乖離の原因を解明し、非臨床段階にお けるヒト代謝物生成の予測精度が向上可能か検証を行った.

第1章では, in vitro/in vivo間の代謝物プロファイルの乖離の原因が主に代謝物の蓄積性や基質濃度や反応時間など in vitro 試験の条件, in vitro 試験では予測が困難な代謝反応の進行などに起因することから,まず,代謝物の蓄積性およ

び*in vitro*における試験条件の妥当性の観点から,代謝物プロファイルの乖離の 原因を精査した. S-777469の臨床薬物動態試験で得られた S-777469 および代謝 物の消失半減期を比較した結果, S-777469 および全ての代謝物の消失半減期は 同程度であり,代謝物は血漿中で蓄積しないことが明らかとなった.また,排 泄物中の未変化体および代謝物量の比較から,生体では投与量の約 10%が 5-CA に代謝されたことが示唆された.また, S-777469の臨床薬物動態試験の結果か ら推察された S-777469の肝臓中最大濃度および 5-CA の T_{max} 値はヒト凍結肝細 胞を用いた *in vitro* 代謝物分析における基質濃度および反応時間と同等であり, 基質濃度や反応時間に関する *in vitro* の試験条件に問題はないことが示唆された. これらのことから, S-777469 における *in vitro/in vivo* 間の代謝物プロファイルの 乖離の原因は, *in vitro* 試験では予測が困難な二次代謝反応が生体で起きたこと が要因と考えられた.

第2章では、ヒト肝 Ms およびヒト凍結肝細胞において 5-CA 生成が予測でき なかった原因を 5-HM および 5-CA 生成に関わる薬物代謝酵素の同定も含めて検 討した.まず、5-HM および 5-CA 生成に関わる主代謝酵素を同定した結果、両 代謝物は酸性医薬品の代謝に深く関わる CYP2C9 により生成することが明らか となった.これまで、*in vitro* 試験系における CYP2C9 の触媒活性は血清アルブ ミンや内在性長鎖脂肪酸によって変動することが報告されている.そこで、つ ぎに、S-777469 代謝に及ぼす血清アルブミンおよび長鎖脂肪酸の影響を精査し た.その結果、BSA は、ヒト肝 Ms において、5-HM および 5-CA 生成反応時の Km値を低下させ、S-777469 もしくは 5-HM と CYP2C9 の親和性を向上させるこ とが示唆された.また、CYP2C9 組換え酵素において、BSA 非添加時に比較し て、BSA 添加時の 5-HM および 5-CA 生成量が高値を示しており、BSA はS-777469 のヒト代謝物の予測精度を向上させることが明らかとなった.さらに、5-HM お よび 5-CA 生成に及ぼす内在性長鎖脂肪酸の影響を検討した結果、アラキドン酸 やα-リノレン酸など複数の長鎖脂肪酸が CYP2C9 による両代謝物の生成を阻害 することが明らかとなった.以上の結果から, *in vitro* 試験系において,内在性 長鎖脂肪酸などにより酸性医薬品の代謝に関わる CYP2C9 の酵素機能が抑制的 に観察されていることが推察された.さらに,血清アルブミンはミクロソーム 膜への基質薬物の移行促進作用や内在性脂肪酸除去作用により CYP2C9 触媒活 性が向上させることが示唆された.今後,より精度高く酸性医薬品のヒト代謝 物生成を予測するには,血清アルブミン添加ヒト肝 Ms などを用いることにより, *in vitro* 試験系のアルブミン,内在性脂肪酸含量を制御することが重要であると 考えられた.

第3章では、S-777469をモデル薬物として、アルブミン分泌が維持された HepaRG 細胞およびヒト肝キメラマウスがヒト代謝物生成予測に有用か検証を 行った.その結果、HepaRG 細胞における 5-HM および 5-CA 生成量はヒト凍結 肝細胞に比較して高値を示した.また、ヒト肝キメラマウスにおける主代謝物 は、臨床試験で得られた血漿中主代謝物である 5-CA であり、HepaRG 細胞やヒ ト肝キメラマウスはヒト代謝物生成予測に有用であることが示唆された.

本研究では、S-777469 において認められた *in vitro/in vivo* 間の代謝物プロファ イルの乖離の原因を解明し、非臨床段階におけるヒト代謝物生成の予測精度が 向上可能か検証を行った.その結果、*in vitro/in vivo* 間で認められた S-777469 代 謝物プロファイルの乖離の原因は、*in vitro* 試験系において、CYP2C9 の触媒活 性が内在性長鎖脂肪酸などにより阻害されているためであることを明らかにし た.また、血清アルブミン添加ヒト肝 Ms や HepaRG 細胞、ヒト肝キメラマウス はヒト主代謝物である 5-CA をより高感度で検出することができたことから、医 薬品開発において、これら試験系は、ヒト代謝物生成の予測精度を向上させ、 より安全で DDI ポテンシャルの低い医薬品創製に貢献できることを明らかにし た.これらの新知見は、ヒト型代謝物の評価やリスクの低い医薬品の創製に繋 がる極めて重要な情報になるとともに,生体での P450 の機能解明の基盤研究に 役立つものと考えられる. 本論文の内容は以下の原著論文に発表した.

K. Sekiguchi, T. Kanazu, M. Takeuchi, H. Hasegawa, Y. Yamaguchi. (2014) Non-clinical evaluation of the metabolism, pharmacokinetics and excretion of S-777469, a new cannabinoid receptor 2 selective agonist. Xenobiotica. 44(1):48-58.

K. Sekiguchi, K. Fukumura, H. Hasegawa, T. Kanazu. (2015) The metabolism and pharmacokinetics of [14C]-S-777469, a new cannabinoid receptor 2 selective agonist, in healthy human subjects. Xenobiotica. 45(2):150-157.

K. Sekiguchi, N. Murayama, T. Kanazu, H. Yamazaki, Y. Yamaguchi. (2015). *In vitro* inhibition and enhancement of liver microsomal S-777469 metabolism by long-chain fatty acids and serum albumin: insight into *in vitro* and *in vivo* discrepancy of metabolite formation in humans Xenobiotica. (in press)

謝辞

本論文は筆者が塩野義製薬株式会社 開発研究所 薬物動態研究部門において,カン ナビノイド受容体 2 選択的アゴニスト S-777469 のヒト代謝物生成に関する基盤研究の 成果をまとめたものです.

本稿を終えるにあたり、本論文の主査として、ご審査賜りました昭和薬科大学 薬物 治療学研究室教授 水谷顕洋先生に謹んで深謝の意を表します.また、本論文の副査と して、ご審査賜りました昭和薬科大学 薬理学研究室教授 渡邊泰男先生および同大学 統合感染免疫学研究室教授 石戸聡先生に深謝の意を表します.

昭和薬科大学 薬物動態学研究室教授 山崎浩史先生には, 論文作成にあたり終始多 大なるご指導をいただくとともに, 成果発表の機会を与えていただきました. 謹んで深 謝の意を表します.

昭和薬科大学 薬物動態学研究室講師 村山典恵先生には,論文作成にあたり終始有 意義なご助言とご支援をいただき,ここに深謝の意を表します.また,昭和薬科大学 薬 物動態学研究室講師 清水万紀子先生,同特任助教 上原正太郎先生並びに同研究室の 皆様には,種々のご便宜を計らいいただき,ここに感謝の意を表します.

本研究の遂行にあたり,終始ご指導ご鞭撻をいただいた塩野義製薬株式会社 開発研 究所 薬物動態研究部門 山口嘉隆部門長に厚く御礼申し上げます.

塩野義製薬株式会社 開発研究所 薬物動態研究部門 金津卓史氏および佐藤準人 氏には,研究遂行および論文作成にあたり日頃より有益なご討論とご助言をいただき, 心から御礼申し上げます.また,日ごろ変わらぬご支援,ご協力をいただきました塩野 義製薬株式会社 開発研究所 薬物動態研究部門の諸氏に厚く御礼申し上げます.

最後に,私の研究に理解を示し,常に応援してくれた妻の智枝および娘の結椛に深く 感謝します.

62

Amacher D. E. (2012). "The primary role of hepatic metabolism in idiosyncratic drug-induced liver injury." Expert Opin Drug Metab Toxicol **8**(3): 335-47.

Ambrosino G., S. M. Basso, et al. (2005). "Isolated hepatocytes versus hepatocyte spheroids: in vitro culture of rat hepatocytes." <u>Cell Transplant</u> **14**(6): 397-401.

Baird W. M., L. A. Hooven, et al. (2005). "Carcinogenic polycyclic aromatic hydrocarbon-DNA adducts and mechanism of action." <u>Environ Mol Mutagen</u> **45**(2-3): 106-14.

Bushee J. L., G. Liang, et al. (2014). "Identification of saturated and unsaturated fatty acids released during microsomal incubations." <u>Xenobiotica</u> **44**(8): 687-95.

Dalvie D., R. S. Obach, et al. (2009). "Assessment of three human in vitro systems in the generation of major human excretory and circulating metabolites." <u>Chem Res Toxicol</u> **22**(2): 357-68.

Davies B. and T. Morris (1993). "Physiological parameters in laboratory animals and humans." Pharm Res **10**(7): 1093-5.

Gripon P., S. Rumin, et al. (2002). "Infection of a human hepatoma cell line by hepatitis B virus." <u>Proc Natl Acad Sci U S A</u> **99**(24): 15655-60.

Hart S. N., Y. Li, et al. (2010). "A comparison of whole genome gene expression profiles of HepaRG cells and HepG2 cells to primary human hepatocytes and human liver tissues." <u>Drug</u> <u>Metab Dispos</u> **38**(6): 988-94.

Hasegawa M., K. Kawai, et al. (2011). "The reconstituted 'humanized liver' in TK-NOG mice is mature and functional." <u>Biochem Biophys Res Commun</u> **405**(3): 405-10.

林 昌洋, 岩月 進 (2006). 高齢者における医薬品の適正使用と安全管理 Available at: http://www.mhlw.go.jp/shingi/2006/11/dl/s1120-7b01.pdf [last accessed 22 July 2014]. Herkenham M., A. B. Lynn, et al. (1990). "Cannabinoid receptor localization in brain." <u>Proc</u>

Natl Acad Sci U S A 87(5): 1932-6.

International Conference on Harmonization. (2009) M3(R2): Guidance on Non-Clinical Safety Studies for the Conduct of Human Clinical Trials and Marketing Authorization for Pharmaceuticals. Available at:

http://www.pharmafacts.com/images/stories/Resources/ICHM3R2.pdf [last accessed 4 June 2015].

Ito K., T. Iwatsubo, et al. (1998). "Prediction of pharmacokinetic alterations caused by drug-drug interactions: metabolic interaction in the liver." <u>Pharmacol Rev</u> **50**(3): 387-412. James L. P., P. R. Mayeux, et al. (2003). "Acetaminophen-induced hepatotoxicity." <u>Drug Metab</u> <u>Dispos</u> **31**(12): 1499-506.

Kikuchi R., M. McCown, et al. (2010). "Effect of hepatitis C virus infection on the mRNA expression of drug transporters and cytochrome p450 enzymes in chimeric mice with humanized liver." <u>Drug Metab Dispos</u> **38**(11): 1954-61.

厚生労働省大臣官房統計情報部 (2011). 平成23年患者調查(傷病分類編)Available at: Available at: http://www.pharmafacts.com/images/stories/Resources/ICHM3R2.pdf [last accessed 4 June 2015].

Mailleux P. and J. J. Vanderhaeghen (1992). "Distribution of neuronal cannabinoid receptor in the adult rat brain: a comparative receptor binding radioautography and in situ hybridization histochemistry." <u>Neuroscience</u> **48**(3): 655-68.

Karazniewicz-Lada M, et al. (2014). "Clinical pharmacokinetics of clopidogrel and its metabolites in patients with cardiovascular diseases." Clin Pharmacokinet **2**(53): 155-164 Manevski N., P. S. Moreolo, et al. (2011). "Bovine serum albumin decreases Km values of human UDP-glucuronosyltransferases 1A9 and 2B7 and increases Vmax values of UGT1A9." <u>Drug Metab Dispos</u> **39**(11): 2117-29.

水垂 亨, 佐藤 準人, 戸内 明, 山口 嘉隆, 馬場 隆彦, 石崎 順 (2009). 嫌気的

条件下におけるヒト肝細胞代謝試験の必要性について, 第16回HAB研究機構学術年会 Odan M., N. Ishizuka, et al. (2012). "Discovery of S-777469: an orally available CB2 agonist as an antipruritic agent." <u>Bioorg Med Chem Lett</u> **22**(8): 2803-6.

Ogilvie B. W., D. Zhang, et al. (2006). "Glucuronidation converts gemfibrozil to a potent, metabolism-dependent inhibitor of CYP2C8: implications for drug-drug interactions." <u>Drug</u> Metab Dispos **34**(1): 191-7.

Poulin P., J. R. Kenny, et al. (2011). "In vitro-in vivo extrapolation of clearance: modeling hepatic metabolic clearance of highly bound drugs and comparative assessment with existing calculation methods." J Pharm Sci **101**(2): 838-51.

Reese M. J., R. M. Wurm, et al. (2008). "An in vitro mechanistic study to elucidate the desipramine/bupropion clinical drug-drug interaction." <u>Drug Metab Dispos</u> **36**(7): 1198-201. Rosemond M. J., L. St John-Williams, et al. (2004). "Enzymology of a carbonyl reduction clearance pathway for the HIV integrase inhibitor, S-1360: role of human liver cytosolic aldo-keto reductases." Chem Biol Interact **147**(2): 129-39.

Rowland A., D. J. Elliot, et al. (2008). "The "albumin effect" and in vitro-in vivo extrapolation: sequestration of long-chain unsaturated fatty acids enhances phenytoin hydroxylation by human liver microsomal and recombinant cytochrome P450 2C9." <u>Drug Metab Dispos</u> **36**(5): 870-7. Rowland A., P. Gaganis, et al. (2007). "Binding of inhibitory fatty acids is responsible for the enhancement of UDP-glucuronosyltransferase 2B7 activity by albumin: implications for in vitro-in vivo extrapolation." <u>J Pharmacol Exp Ther</u> **321**(1): 137-47.

Srivastava A., J. L. Maggs, et al. (2010). "Role of reactive metabolites in drug-induced hepatotoxicity." <u>Handb Exp Pharmacol(196)</u>: 165-94.

杉山 正康 編著 (2010). 薬の相互作用としくみ 改訂第9版, 医歯薬出版株式会社, 1-27

Tang, C., Y. Lin, et al. (2002). "Effect of albumin on phenytoin and tolbutamide metabolism in

65

human liver microsomes: an impact more than protein binding." <u>Drug Metab Dispos</u> **30**(6): 648-54.

戸塚 善三郎 編著 (2015). 薬物 (ヒト) 代謝物の構造解析・同定と承認申請/照会事 項対応,サイエンス&テクノロジー

US FDA. (2008). United States Food and Drug Administration Guidance for Industry, Safety testing of drug metabolites, February 2008. Available at:

http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm 079266.pdf [last accessed 4 June 2015].

US FDA. (2012). United States Food and Drug Administration Guidance for Industry, Drug Interaction Studies—Study Design, Data Analysis, Implications for Dosing, and Labeling Recommendations, February 2012. Available at:

http://www.fda.gov/downloads/drugs/guidancecomplianceregulatoryinformation/guidances/ucm 292362.pdf [last accessed 4 June 2015].

Wang, W. W., S. R. Khetani, et al. (2010). "Assessment of a micropatterned hepatocyte coculture system to generate major human excretory and circulating drug metabolites." <u>Drug</u> Metab Dispos **38**(10): 1900-5.

Wattanachai, N., T. M. Polasek, et al. (2011). "In vitro-in vivo extrapolation of CYP2C8-catalyzed paclitaxel 6alpha-hydroxylation: effects of albumin on in vitro kinetic parameters and assessment of interindividual variability in predicted clearance." <u>Eur J Clin Pharmacol</u> **67**(8): 815-24.

Wattanachai, N., W. Tassaneeyakul, et al. (2012). "Effect of albumin on human liver microsomal and recombinant CYP1A2 activities: impact on in vitro-in vivo extrapolation of drug clearance." <u>Drug Metab Dispos</u> **40**(5): 982-9.

山川 民夫, 今堀 和友ら (1989). 生化学データブック[I]第5刷, 東京化学同人, 91-135 Yao, H. T., Y. W. Chang, et al. (2006). "The inhibitory effect of polyunsaturated fatty acids on human CYP enzymes." <u>Life Sci</u> **79**(26): 2432-40.